Back to Search
ISBN 9780138027117 is out of print and is currently unavailable, alternate formats (if applicable) are shown below.
Available options are listed below:

Applied Electro Optics (Out of print)

AUTHOR Desmarais, Louis
PUBLISHER Prentice Hall (12/15/1997)
PRODUCT TYPE Paperback (Paperback)

Description

A "back-to-basics" guide to opto-electronic circuit design and construction.

To successfully build and optimize opto-electronic circuits, you need to understand both the fundamentals of optics and electronics. Applied Electro-Optics provides engineers, designers and technicians with a firm background in both optical physics and circuit design.

In Part I, the book introduces the basic theory of opto-electronics, including:

  • Maxwell's equations and the wave nature of light
  • Reflection and refraction, with extensive coverage of Snell's Law Interference phenomena and the Fabry-Perot interferometer
  • Diffraction effects and diffraction gratings
  • Polarization and electro-optic modulation
  • Photons, basic quantum theory, and spectroscopic techniques

Then, in Part II, the book introduces each major element of an electro-optic system. Understand semiconductor light sources such as LEDs and diode lasers. Consider optical transmitters and discover how to minimize the impact of electromagnetic interference through careful circuit location, grounding, and shielding.

Review the basic structure and operation of photodiodes, phototransistors, optocouplers, and photoconductors. Then, learn practical techniques for managing the trade-offs required to integrate these devices into useful circuits. A full chapter on optical receivers demonstrates how to integrate photodetectors into useful receiver circuits; both amplifier and hybrid circuits are covered. Finally, walk step-by-step through building and optimizing circuits for a variety of applications, including CD players and infrared data transmission.

If your goal is to build the best possible opto-electronic circuits or just to understand how they operate, Applied Electro-Optics delivers just the right balance of theory and practice to help you.

Show More
Product Format
Product Details
ISBN-13: 9780138027117
ISBN-10: 0138027110
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 352
Carton Quantity: 12
Product Dimensions: 7.04 x 0.98 x 9.20 inches
Weight: 1.48 pound(s)
Feature Codes: Index, Table of Contents, Illustrated
Country of Origin: US
Subject Information
BISAC Categories
Technology & Engineering | Electronics - Optoelectronics
Technology & Engineering | Electrical
Dewey Decimal: 621.381
Library of Congress Control Number: 97048448
Descriptions, Reviews, Etc.
annotation
A "back-to-basics" guide to intelligently designing and building electro-optics systems. Practical coverage is given of opto-electronics theory, including Maxwell's equations, photons, and quanta. Covering both optical and electrical design issues, the book gives real applications and extensive opto-electronic circuit examples.
Show More
jacket back

A "back-to-basics" guide to opto-electronic circuit design and construction.

To successfully build and optimize opto-electronic circuits, you need to understand both the fundamentals of optics and electronics. Applied Electro-Optics provides engineers, designers and technicians with a firm background in both optical physics and circuit design.

In Part I, the book introduces the basic theory of opto-electronics, including:

  • Maxwell's equations and the wave nature of light
  • Reflection and refraction, with extensive coverage of Snell's Law Interference phenomena and the Fabry-Perot interferometer
  • Diffraction effects and diffraction gratings
  • Polarization and electro-optic modulation
  • Photons, basic quantum theory, and spectroscopic techniques

Then, in Part II, the book introduces each major element of an electro-optic system. Understand semiconductor light sources such as LEDs and diode lasers. Consider optical transmitters and discover how to minimize the impact of electromagnetic interference through careful circuit location, grounding, and shielding.

Review the basic structure and operation of photodiodes, phototransistors, optocouplers, and photoconductors. Then, learn practical techniques for managing the trade-offs required to integrate these devices into useful circuits. A full chapter on optical receivers demonstrates how to integrate photodetectors into useful receiver circuits; both amplifier and hybrid circuits are covered. Finally, walk step-by-step through building and optimizing circuits for a variety of applications, including CD players and infrared data transmission.

If your goal is to build the best possible opto-electronic circuits or just to understand how they operate, Applied Electro-Optics delivers just the right balance of theory and practice to help you.

Show More
publisher marketing

A "back-to-basics" guide to opto-electronic circuit design and construction.

To successfully build and optimize opto-electronic circuits, you need to understand both the fundamentals of optics and electronics. Applied Electro-Optics provides engineers, designers and technicians with a firm background in both optical physics and circuit design.

In Part I, the book introduces the basic theory of opto-electronics, including:

  • Maxwell's equations and the wave nature of light
  • Reflection and refraction, with extensive coverage of Snell's Law Interference phenomena and the Fabry-Perot interferometer
  • Diffraction effects and diffraction gratings
  • Polarization and electro-optic modulation
  • Photons, basic quantum theory, and spectroscopic techniques

Then, in Part II, the book introduces each major element of an electro-optic system. Understand semiconductor light sources such as LEDs and diode lasers. Consider optical transmitters and discover how to minimize the impact of electromagnetic interference through careful circuit location, grounding, and shielding.

Review the basic structure and operation of photodiodes, phototransistors, optocouplers, and photoconductors. Then, learn practical techniques for managing the trade-offs required to integrate these devices into useful circuits. A full chapter on optical receivers demonstrates how to integrate photodetectors into useful receiver circuits; both amplifier and hybrid circuits are covered. Finally, walk step-by-step through building and optimizing circuits for a variety of applications, including CD players and infrared data transmission.

If your goal is to build the best possible opto-electronic circuits or just to understand how they operate, Applied Electro-Optics delivers just the right balance of theory and practice to help you.

Show More
List Price $74.25
Your Price  $73.51
Paperback