Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis
| AUTHOR | Fu, Xueqian; Fu, Xueqia; Fu, Xueqian |
| PUBLISHER | Elsevier (06/02/2025) |
| PRODUCT TYPE | Paperback (Paperback) |
Description
Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis addresses uncertainty issues in photovoltaic power generation while also supporting the collaborative enhancement of understanding and applying theory and methods through the integration of models, cases, and code. The book employs StaRAI to address uncertainty analysis and modeling issues at different time scales in photovoltaic power generation, including photovoltaic power prediction, probabilistic power flow, stochastic planning, and more. Chapters cover uncertainty of PV power generation from short to long time scales, including day-ahead scheduling (24 hours in advance), intraday scheduling (minute to hour rolling), and grid planning (15 years). Other sections study the impact of photovoltaic uncertainty on the power grid, offering the most classic cases of probabilistic load flow and PV stochastic planning.
The theoretical content of this book is not only systematic but supplemented with concrete examples and MATLAB/Python codes. Its contents will be of interest to all those working on photovoltaic planning, power generation, power plants, and applications of AI, including researchers, advanced students, faculty engineers, R&D, and designers.
The theoretical content of this book is not only systematic but supplemented with concrete examples and MATLAB/Python codes. Its contents will be of interest to all those working on photovoltaic planning, power generation, power plants, and applications of AI, including researchers, advanced students, faculty engineers, R&D, and designers.
Show More
Product Format
Product Details
ISBN-13:
9780443340413
ISBN-10:
0443340412
Binding:
Paperback or Softback (Trade Paperback (Us))
Content Language:
English
More Product Details
Page Count:
358
Carton Quantity:
22
Product Dimensions:
6.33 x 0.71 x 9.03 inches
Weight:
1.30 pound(s)
Country of Origin:
US
Subject Information
BISAC Categories
Science | Energy
Science | Power Resources - Alternative & Renewable
Descriptions, Reviews, Etc.
publisher marketing
Statistical Relational Artificial Intelligence in Photovoltaic Power Uncertainty Analysis addresses uncertainty issues in photovoltaic power generation while also supporting the collaborative enhancement of understanding and applying theory and methods through the integration of models, cases, and code. The book employs StaRAI to address uncertainty analysis and modeling issues at different time scales in photovoltaic power generation, including photovoltaic power prediction, probabilistic power flow, stochastic planning, and more. Chapters cover uncertainty of PV power generation from short to long time scales, including day-ahead scheduling (24 hours in advance), intraday scheduling (minute to hour rolling), and grid planning (15 years). Other sections study the impact of photovoltaic uncertainty on the power grid, offering the most classic cases of probabilistic load flow and PV stochastic planning.
The theoretical content of this book is not only systematic but supplemented with concrete examples and MATLAB/Python codes. Its contents will be of interest to all those working on photovoltaic planning, power generation, power plants, and applications of AI, including researchers, advanced students, faculty engineers, R&D, and designers.
The theoretical content of this book is not only systematic but supplemented with concrete examples and MATLAB/Python codes. Its contents will be of interest to all those working on photovoltaic planning, power generation, power plants, and applications of AI, including researchers, advanced students, faculty engineers, R&D, and designers.
Show More
Your Price
$188.10
