Back to Search

Deep Learning: A Practical Introduction

AUTHOR Kurup, Aswathy Rajendra; Ajith, Meenu; Kurup, Aswathy Rajendra et al.
PUBLISHER Wiley (07/15/2024)
PRODUCT TYPE Hardcover (Hardcover)

Description

An engaging and accessible introduction to deep learning perfect for students and professionals

In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a start-to-finish instruction book with complete coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material and a GitHub repository containing code and data for all provided examples.

Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:

  • Thorough introductions to deep learning and deep learning tools
  • Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures
  • Practical discussions of recurrent neural networks and non-supervised approaches to deep learning
  • Fulsome treatments of generative adversarial networks as well as deep Bayesian Neural networks.

Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Show More
Product Format
Product Details
ISBN-13: 9781119861867
ISBN-10: 1119861861
Binding: Hardback or Cased Book (Sewn)
Content Language: English
More Product Details
Page Count: 416
Carton Quantity: 18
Product Dimensions: 6.69 x 0.94 x 9.61 inches
Weight: 1.90 pound(s)
Feature Codes: Bibliography, Index
Country of Origin: GB
Subject Information
BISAC Categories
Computers | Data Science - Neural Networks
Computers | Programming - Algorithms
Dewey Decimal: 006.31
Library of Congress Control Number: 2024032844
Descriptions, Reviews, Etc.
jacket back

An engaging and accessible introduction to deep learning perfect for students and professionals

In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples.

Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:

  • Thorough introductions to deep learning and deep learning tools
  • Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures
  • Practical discussions of recurrent neural networks and non-supervised approaches to deep learning
  • Fulsome treatments of generative adversarial networks as well as deep Bayesian neural networks

Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Show More
publisher marketing

An engaging and accessible introduction to deep learning perfect for students and professionals

In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a start-to-finish instruction book with complete coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material and a GitHub repository containing code and data for all provided examples.

Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find:

  • Thorough introductions to deep learning and deep learning tools
  • Comprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architectures
  • Practical discussions of recurrent neural networks and non-supervised approaches to deep learning
  • Fulsome treatments of generative adversarial networks as well as deep Bayesian Neural networks.

Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Show More
Your Price  $108.90
Hardcover