Back to Search

Machine Learning: A Concise Introduction (Not yet published)

AUTHOR Knox, Steven W.
PUBLISHER Wiley (02/04/2026)
PRODUCT TYPE Hardcover (Hardcover)

Description

New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side

Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition.

In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations -- essential elements of most applied projects.

Written by an expert in the field, this important resource:

  • Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods
  • Presents side-by-side Python and R source code which shows how to apply and interpret many of the techniques covered
  • Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions
  • Contains useful information for effectively communicating with clients on both technical and ethical topics
  • Details classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines

A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields.

Show More
Product Format
Product Details
ISBN-13: 9781394325252
ISBN-10: 1394325258
Binding: Hardback or Cased Book (Sewn)
Content Language: English
Edition Number: 0002
More Product Details
Page Count: 448
Carton Quantity: 0
Feature Codes: Bibliography, Index
Country of Origin: US
Subject Information
BISAC Categories
Computers | Artificial Intelligence - General
Computers | Statistics
Computers | Data Science - Machine Learning
Dewey Decimal: 006.31
Library of Congress Control Number: 2025018238
Descriptions, Reviews, Etc.
publisher marketing

New edition of a PROSE award finalist title on core concepts for machine learning, updated with the latest developments in the field, now with Python and R source code side-by-side

Machine Learning is a comprehensive text on the core concepts, approaches, and applications of machine learning. It presents fundamental ideas, terminology, and techniques for solving applied problems in classification, regression, clustering, density estimation, and dimension reduction. New content for this edition includes chapter expansions which provide further computational and algorithmic insights to improve reader understanding. This edition also revises several chapters to account for developments since the prior edition.

In this book, the design principles behind the techniques are emphasized, including the bias-variance trade-off and its influence on the design of ensemble methods, enabling readers to solve applied problems more efficiently and effectively. This book also includes methods for optimization, risk estimation, model selection, and dealing with biased data samples and software limitations -- essential elements of most applied projects.

Written by an expert in the field, this important resource:

  • Illustrates many classification methods with a single, running example, highlighting similarities and differences between methods
  • Presents side-by-side Python and R source code which shows how to apply and interpret many of the techniques covered
  • Includes many thoughtful exercises as an integral part of the text, with an appendix of selected solutions
  • Contains useful information for effectively communicating with clients on both technical and ethical topics
  • Details classification techniques including likelihood methods, prototype methods, neural networks, classification trees, and support vector machines

A volume in the popular Wiley Series in Probability and Statistics, Machine Learning offers the practical information needed for an understanding of the methods and application of machine learning for advanced undergraduate and beginner graduate students, data science and machine learning practitioners, and other technical professionals in adjacent fields.

Show More
List Price $106.95
Your Price  $105.88
Hardcover