Back to Search

Optimal Mobile Sensing and Actuation Policies in Cyber-Physical Systems

AUTHOR Chen, Yangquan; Tricaud, Christophe
PUBLISHER Springer (10/15/2011)
PRODUCT TYPE Hardcover (Hardcover)

Description
A successful cyber-physical system, a complex interweaving of hardware and software with some part of the physical environment, depends on proper identification of the, often pre-existing, physical element. A bespoke cyber part of the system may then be designed from scratch. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. These are very challenging to observe, their states and inputs being distributed throughout a spatial domain. Consequently, systematic approaches to the optimization of sensor location have to be devised for parameter estimation. The text begins by reviewing the field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research problems are then defined within this framework. Two important problems considered are optimal mobile sensor trajectory planning and the accuracy effects and allocation of remote sensors. These are followed up with a solution to the problem of optimal robust estimation. Actuation policies are then introduced into the framework with the purpose of improving estimation and optimizing the trajectories of both sensors and actuators simultaneously. The large number of illustrations within the text will assist the reader to visualize the application of the methods proposed. A group of similar examples are used throughout the book to help the reader assimilate the material more easily. The monograph concentrates on the use of methods for which a cyber-physical-systems infrastructure is required. The methods are computationally heavy and require mobile sensors and actuators with communications abilities. Application examples cover fields from environmental science to national security so that readers are encouraged to link the ideas of cyber-physical systems with their own research."
Show More
Product Format
Product Details
ISBN-13: 9781447122616
ISBN-10: 1447122615
Binding: Hardback or Cased Book (Sewn)
Content Language: English
More Product Details
Page Count: 170
Carton Quantity: 34
Product Dimensions: 6.40 x 0.64 x 9.27 inches
Weight: 0.59 pound(s)
Feature Codes: Bibliography, Index, Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Technology & Engineering | Engineering (General)
Technology & Engineering | Automation
Technology & Engineering | Mechanical
Dewey Decimal: 003.78
Library of Congress Control Number: 2011940676
Descriptions, Reviews, Etc.
jacket back

A successful cyber-physical system, a complex interweaving of hardware and software in direct interaction with some parts of the physical environment, relies heavily on proper identification of the, often pre-existing, physical elements. Based on information from that process, a bespoke "cyber" part of the system may then be designed for a specific purpose. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. Such systems are very challenging to measure, their states being distributed throughout a spatial domain. Consequently, optimal strategies are needed and systematic approaches to the optimization of sensor locations have to be devised for parameter estimation.

The text begins by reviewing the newer field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research opportunities are then defined within this framework. Two important problems considered are optimal mobile sensor trajectory planning and the accuracy effects and allocation of remote sensors. These are followed up with a solution to the problem of optimal robust estimation. Actuation strategies are then introduced into the framework with the purpose of improving estimation and optimizing the trajectories of both mobile sensors and mobile actuators simultaneously. The large number of illustrations within the text will assist the reader to visualize the application of the methods proposed. A group of similar examples are used throughout the book to help the reader assimilate the material more easily.

Under a given cyber-physical systems infrastructure, communications abilities of mobile sensors and/or mobile actuators may be needed, and this can beconsidered within the framework presented in this text. Application examples cover fields from environmental science to national security so that readers are encouraged to link the ideas of cyber-physical systems with their own research.

Show More
publisher marketing
A successful cyber-physical system, a complex interweaving of hardware and software with some part of the physical environment, depends on proper identification of the, often pre-existing, physical element. A bespoke cyber part of the system may then be designed from scratch. Optimal Mobile Sensing and Actuation Strategies in Cyber-physical Systems focuses on distributed-parameter systems the dynamics of which can be modelled with partial differential equations. These are very challenging to observe, their states and inputs being distributed throughout a spatial domain. Consequently, systematic approaches to the optimization of sensor location have to be devised for parameter estimation. The text begins by reviewing the field of cyber-physical systems and introducing background notions of distributed parameter systems and optimal observation theory. New research problems are then defined within this framework. Two important problems considered are optimal mobile sensor trajectory planning and the accuracy effects and allocation of remote sensors. These are followed up with a solution to the problem of optimal robust estimation. Actuation policies are then introduced into the framework with the purpose of improving estimation and optimizing the trajectories of both sensors and actuators simultaneously. The large number of illustrations within the text will assist the reader to visualize the application of the methods proposed. A group of similar examples are used throughout the book to help the reader assimilate the material more easily. The monograph concentrates on the use of methods for which a cyber-physical-systems infrastructure is required. The methods are computationally heavy and require mobile sensors and actuators with communications abilities. Application examples cover fields from environmental science to national security so that readers are encouraged to link the ideas of cyber-physical systems with their own research."
Show More
List Price $109.99
Your Price  $108.89
Hardcover