Back to Search

Probabilistic Graphical Models: Principles and Applications

AUTHOR Sucar, Luis Enrique
PUBLISHER Springer (10/09/2016)
PRODUCT TYPE Paperback (Paperback)

Description
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.
Show More
Product Format
Product Details
ISBN-13: 9781447170549
ISBN-10: 1447170547
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 253
Carton Quantity: 0
Country of Origin: NL
Subject Information
BISAC Categories
Computers | Mathematical & Statistical Software
Computers | Artificial Intelligence - Computer Vision & Pattern Recognit
Computers | Probability & Statistics - General
Dewey Decimal: 005.55
Descriptions, Reviews, Etc.
jacket back

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.

The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.

Topics and features:

  • Presents a unified framework encompassing all of the main classes of PGMs
  • Explores the fundamental aspects of representation, inference and learning for each technique
  • Describes the practical application of the different techniques
  • Examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models
  • Provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter
  • Suggests possible course outlines for instructors in the preface

This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.

Show More
publisher marketing
This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.
Show More
List Price $54.99
Your Price  $54.44
Paperback