Back to Search

Outlier Analysis

AUTHOR Aggarwal, Charu C.
PUBLISHER Springer (01/11/2013)
PRODUCT TYPE Hardcover (Hardcover)

Description
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions- the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.
Show More
Product Format
Product Details
ISBN-13: 9781461463955
ISBN-10: 1461463955
Binding: Hardback or Cased Book (Sewn)
Content Language: English
More Product Details
Page Count: 446
Carton Quantity: 16
Product Dimensions: 6.50 x 1.30 x 9.30 inches
Weight: 1.80 pound(s)
Feature Codes: Bibliography, Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Computers | Artificial Intelligence - General
Computers | Data Science - Data Analytics
Computers | System Administration - Storage & Retrieval
Dewey Decimal: 005.74
Library of Congress Control Number: 2012956186
Descriptions, Reviews, Etc.
publisher marketing
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions- the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.
Show More

Author: Aggarwal, Charu C.
Charu C. Aggarwal obtained his B.Tech in Computer Science from IIT Kanpur in 1993 and Ph.D. from MIT in 1996. He has been a Research Staff Member at IBM since then, and has published over 90 papers in major conferences and journals in the database and data mining field. He has applied for or been granted over 50 US and International patents, and has twice been designated Master Inventor at IBM for the commercial value of his patents. He has been granted 14 invention achievement awards by IBM for his patents. His work on real time bio-terrorist threat detection in data streams won the IBM Epispire award for environmental excellence in 2003. He has served on the program committee of most major database conferences, and was program chair for the Data Mining and Knowledge Discovery Workshop, 2003, and a program vice-chair for the SIAM Conference on Data Mining, 2007. He is an associate editor of the IEEE Transactions on Data Engineering and an action editor of the Data Mining and Knowledge Discovery Journal. He is a senior member of the IEEE.
Show More
List Price $159.99
Your Price  $158.39
Hardcover