Back to Search

Deep Learning for Dialogue Systems: Chit-Chat and Beyond

AUTHOR Li, Juntao; Yan, Rui; Yu, Zhou
PUBLISHER Now Publishers (06/16/2022)
PRODUCT TYPE Paperback (Paperback)

Description
With the rapid progress of deep neural models and the explosion of data resources, dialogue systems that supports extensive topics and chit-chat conversations are emerging in natural language processing (NLP), information retrieval (IR), and machine learning (ML). To facilitate the development of both retrieval-based chit-chat systems and IR tasks supported by them, the authors survey chit-chat systems from two perspectives: (1) techniques to build chit-chat systems, and (2) chit-chat components in completing IR tasks. The main contributions of this survey are: surveying the deep neural models; connecting the recently resurgent chit-chat systems and task-oriented system; introducing various solutions for challenges from different perspectives, including dataside and model-side solutions and utilization of extra resources; presenting data resources and evaluation methods for building retrieval-based and generation-based chit-chat systems. The authors also analyze the main challenges, possible new exploration directions and rising trends, which will shed light on building human-like systems. This survey is intended to bridge the researchers of IR and the NLP community to move chit-chat systems forward and support more IR tasks. It will be of interest to IR or NLP researchers who want to study chit-chat from different perspectives, IR researchers who need to complete their tasks with the assistance of chit-chat systems, engineers with hands-on experience in building these systems to leverage advanced chit-chat modeling techniques, or anyone who wants keep up with the frontier of chit-chat systems or learn how to build them with deep neural architectures.
Show More
Product Format
Product Details
ISBN-13: 9781638280224
ISBN-10: 1638280223
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 186
Carton Quantity: 42
Product Dimensions: 6.14 x 0.40 x 9.21 inches
Weight: 0.60 pound(s)
Country of Origin: US
Subject Information
BISAC Categories
Computers | Information Technology
Descriptions, Reviews, Etc.
publisher marketing
With the rapid progress of deep neural models and the explosion of data resources, dialogue systems that supports extensive topics and chit-chat conversations are emerging in natural language processing (NLP), information retrieval (IR), and machine learning (ML). To facilitate the development of both retrieval-based chit-chat systems and IR tasks supported by them, the authors survey chit-chat systems from two perspectives: (1) techniques to build chit-chat systems, and (2) chit-chat components in completing IR tasks. The main contributions of this survey are: surveying the deep neural models; connecting the recently resurgent chit-chat systems and task-oriented system; introducing various solutions for challenges from different perspectives, including dataside and model-side solutions and utilization of extra resources; presenting data resources and evaluation methods for building retrieval-based and generation-based chit-chat systems. The authors also analyze the main challenges, possible new exploration directions and rising trends, which will shed light on building human-like systems. This survey is intended to bridge the researchers of IR and the NLP community to move chit-chat systems forward and support more IR tasks. It will be of interest to IR or NLP researchers who want to study chit-chat from different perspectives, IR researchers who need to complete their tasks with the assistance of chit-chat systems, engineers with hands-on experience in building these systems to leverage advanced chit-chat modeling techniques, or anyone who wants keep up with the frontier of chit-chat systems or learn how to build them with deep neural architectures.
Show More
List Price $99.00
Your Price  $98.01
Paperback