Back to Search

A Tutorial on Meta-Reinforcement Learning

AUTHOR Liu, Evan Zheran; Vuorio, Risto; Beck, Jacob
PUBLISHER Now Publishers (04/03/2025)
PRODUCT TYPE Paperback (Paperback)

Description

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL considers a family of machine learning (ML) methods that learn to reinforcement learn. That is, meta-RL methods use sample-inefficient ML to learn sample-efficient RL algorithms, or components thereof. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible.

In this monograph, the meta-RL problem setting is described in detail as well as its major variations. At a high level the book discusses how meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, the meta-RL algorithms and applications are surveyed. The monograph concludes by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

Show More
Product Format
Product Details
ISBN-13: 9781638285403
ISBN-10: 1638285403
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 176
Carton Quantity: 44
Product Dimensions: 6.14 x 0.38 x 9.21 inches
Weight: 0.56 pound(s)
Country of Origin: US
Subject Information
BISAC Categories
Computers | Data Science - Machine Learning
Computers | Imaging Systems
Computers | Machine Theory
Descriptions, Reviews, Etc.
publisher marketing

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL considers a family of machine learning (ML) methods that learn to reinforcement learn. That is, meta-RL methods use sample-inefficient ML to learn sample-efficient RL algorithms, or components thereof. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible.

In this monograph, the meta-RL problem setting is described in detail as well as its major variations. At a high level the book discusses how meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, the meta-RL algorithms and applications are surveyed. The monograph concludes by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

Show More
List Price $99.00
Your Price  $98.01
Paperback