Federated Learning - A Systematic Review: A Systematic Review
| PUBLISHER | Intechopen (04/02/2025) |
| PRODUCT TYPE | Hardcover (Hardcover) |
Description
Federated Learning (FL) represents a transformative leap in distributed machine learning by enabling multiple clients to collaboratively solve complex tasks without compromising data privacy. This innovative approach eliminates the need for centralized cloud storage, ensuring privacy-preserving data handling while offering smarter models, reduced latency, and enhanced power efficiency. This book serves as a comprehensive guide to the evolving field of Federated Learning, providing in-depth insights into its definition, architecture, and classification. It examines the distinctions between FL and traditional distributed learning paradigms through a comparative lens. The chapters explore key concepts, algorithmic advancements, and computational strategies that underpin the development of FL, with a particular focus on deep learning applications. Readers will find detailed discussions on critical topics such as horizontal and vertical FL, federated neural networks, federated reinforcement learning, and specialized algorithms like Federated LSTM and CNNs. By bridging theoretical foundations with practical implementations, the book also addresses common challenges in FL and presents potential pathways for future advancements. Aimed at researchers, academics, and practitioners, this book is valuable for understanding Federated Learning's role in shaping the future of privacy-conscious, intelligent machine learning systems.
Show More
Product Format
Product Details
ISBN-13:
9781836342120
ISBN-10:
1836342128
Binding:
Hardback or Cased Book (Sewn)
Content Language:
English
More Product Details
Page Count:
194
Carton Quantity:
12
Product Dimensions:
7.00 x 0.50 x 10.00 inches
Weight:
1.23 pound(s)
Country of Origin:
US
Subject Information
BISAC Categories
Computers | Artificial Intelligence - General
Descriptions, Reviews, Etc.
publisher marketing
Federated Learning (FL) represents a transformative leap in distributed machine learning by enabling multiple clients to collaboratively solve complex tasks without compromising data privacy. This innovative approach eliminates the need for centralized cloud storage, ensuring privacy-preserving data handling while offering smarter models, reduced latency, and enhanced power efficiency. This book serves as a comprehensive guide to the evolving field of Federated Learning, providing in-depth insights into its definition, architecture, and classification. It examines the distinctions between FL and traditional distributed learning paradigms through a comparative lens. The chapters explore key concepts, algorithmic advancements, and computational strategies that underpin the development of FL, with a particular focus on deep learning applications. Readers will find detailed discussions on critical topics such as horizontal and vertical FL, federated neural networks, federated reinforcement learning, and specialized algorithms like Federated LSTM and CNNs. By bridging theoretical foundations with practical implementations, the book also addresses common challenges in FL and presents potential pathways for future advancements. Aimed at researchers, academics, and practitioners, this book is valuable for understanding Federated Learning's role in shaping the future of privacy-conscious, intelligent machine learning systems.
Show More
List Price $150.00
Your Price
$148.50
