Groupes Algébriques Semi-Simples En Dimension Cohomologique: Semisimple Algebraic Groups in Cohomological Dimension
| AUTHOR | Gille, Philippe |
| PUBLISHER | Springer (05/25/2019) |
| PRODUCT TYPE | Paperback (Paperback) |
La théorie des groupes algébriques sur un corps arbitraire est l'une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s'applique à la classification des groupes semi-simples.
The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a generalfield k of separable cohomological dimension to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.
La thorie des groupes algbriques sur un corps arbitraire est l'une des branches les plus merveilleuses des mathmatiques modernes. Cette monographie porte sur les groupes algbriques semi-simples dfinis sur un corps k de dimension cohomologique sparable Utilisant principalement des techniques de groupes algbriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus Bayer-Fluckiger and Parimala) ainsi que les avances sur les cas exceptionnels restants (par exemple de type E8). Ceci s'applique la classification des groupes semi-simples.
The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension ^rimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.
La théorie des groupes algébriques sur un corps arbitraire est l'une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s'applique à la classification des groupes semi-simples.
The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a generalfield k of separable cohomological dimension to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.
