Back to Search

Applying Quantitative Bias Analysis to Epidemiologic Data

AUTHOR Maclehose, Richard F.; Lash, Timothy L.; Fox, Matthew P.
PUBLISHER Springer (03/26/2023)
PRODUCT TYPE Paperback (Paperback)

Description

This textbook and guide focuses on methodologies for bias analysis in epidemiology and public health, not only providing updates to the first edition but also further developing methods and adding new advanced methods.

As computational power available to analysts has improved and epidemiologic problems have become more advanced, missing data, Bayes, and empirical methods have become more commonly used. This new edition features updated examples throughout and adds coverage addressing:

  • Measurement error pertaining to continuous and polytomous variables
  • Methods surrounding person-time (rate) data
  • Bias analysis using missing data, empirical (likelihood), and Bayes methods

A unique feature of this revision is its section on best practices for implementing, presenting, and interpreting bias analyses. Pedagogically, the text guides students and professionals through the planning stages of bias analysis, including the design of validation studies and the collection of validity data from other sources. Three chapters present methods for corrections to address selection bias, uncontrolled confounding, and measurement errors, and subsequent sections extend these methods to probabilistic bias analysis, missing data methods, likelihood-based approaches, Bayesian methods, and best practices.


Show More
Product Format
Product Details
ISBN-13: 9783030826758
ISBN-10: 3030826759
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
Edition Number: 0002
More Product Details
Page Count: 467
Carton Quantity: 16
Product Dimensions: 6.14 x 0.97 x 9.21 inches
Weight: 1.48 pound(s)
Feature Codes: Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Medical | Biostatistics
Medical | Epidemiology
Medical | Life Sciences - General
Descriptions, Reviews, Etc.
jacket back

This textbook and guide focuses on methodologies for bias analysis in epidemiology and public health, not only providing updates to the first edition but also further developing methods and adding new advanced methods.

As computational power available to analysts has improved and epidemiologic problems have become more advanced, missing data, Bayes, and empirical methods have become more commonly used. This new edition features updated examples throughout and adds coverage addressing:

  • Measurement error pertaining to continuous and polytomous variables
  • Methods surrounding person-time (rate) data
  • Bias analysis using missing data, empirical (likelihood), and Bayes methods

A unique feature of this revision is its section on best practices for implementing, presenting, and interpreting bias analyses. Pedagogically, the text guides students and professionals through the planning stages of bias analysis, including the design of validation studies and the collection of validity data from other sources. Three chapters present methods for corrections to address selection bias, uncontrolled confounding, and measurement errors, and subsequent sections extend these methods to probabilistic bias analysis, missing data methods, likelihood-based approaches, Bayesian methods, and best practices.

Show More
publisher marketing

This textbook and guide focuses on methodologies for bias analysis in epidemiology and public health, not only providing updates to the first edition but also further developing methods and adding new advanced methods.

As computational power available to analysts has improved and epidemiologic problems have become more advanced, missing data, Bayes, and empirical methods have become more commonly used. This new edition features updated examples throughout and adds coverage addressing:

  • Measurement error pertaining to continuous and polytomous variables
  • Methods surrounding person-time (rate) data
  • Bias analysis using missing data, empirical (likelihood), and Bayes methods

A unique feature of this revision is its section on best practices for implementing, presenting, and interpreting bias analyses. Pedagogically, the text guides students and professionals through the planning stages of bias analysis, including the design of validation studies and the collection of validity data from other sources. Three chapters present methods for corrections to address selection bias, uncontrolled confounding, and measurement errors, and subsequent sections extend these methods to probabilistic bias analysis, missing data methods, likelihood-based approaches, Bayesian methods, and best practices.


Show More
List Price $64.79
Your Price  $64.14
Paperback