Back to Search

Embedded Deep Learning: Algorithms, Architectures and Circuits for Always-On Neural Network Processing

AUTHOR Bankman, Daniel; Moons, Bert; Verhelst, Marian
PUBLISHER Springer (11/03/2018)
PRODUCT TYPE Hardcover (Hardcover)

Description

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.

  • Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;
  • Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy - applications, algorithms, hardware architectures, and circuits - supported by real silicon prototypes;
  • Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
  • Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization's implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.

Show More
Product Format
Product Details
ISBN-13: 9783319992228
ISBN-10: 3319992228
Binding: Hardback or Cased Book (Sewn)
Content Language: English
More Product Details
Page Count: 206
Carton Quantity: 30
Product Dimensions: 6.14 x 0.56 x 9.21 inches
Weight: 1.08 pound(s)
Feature Codes: Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Technology & Engineering | Electronics - Circuits - General
Technology & Engineering | Signals & Signal Processing
Dewey Decimal: 621.381
Descriptions, Reviews, Etc.
jacket back

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.

  • Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;
  • Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy - applications, algorithms, hardware architectures, and circuits - supported by real silicon prototypes;
  • Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
  • Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization's implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.


Show More
publisher marketing

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.

  • Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;
  • Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy - applications, algorithms, hardware architectures, and circuits - supported by real silicon prototypes;
  • Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;
  • Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization's implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.

Show More
List Price $139.99
Your Price  $138.59
Hardcover