Abstract Compositional Analysis of Iterated Relations: A Structural Approach to Complex State Transition Systems
| AUTHOR | Geurts, Frederic |
| PUBLISHER | Springer (12/18/1998) |
| PRODUCT TYPE | Paperback (Paperback) |
Description
State-transition systems model machines, programs, and speci?cations 20, 23,284,329], butalsothegrowthanddeclineofantpopulations, ?nancial markets, diseases and crystals 22, 35, 178, 209, 279]. In the last decade, thegrowinguseofdigitalcontrollersinvariousenvironmentshasentailed theconvergenceofcontroltheoryandreal-timesystemstowardhybrids- tems 16] by combining both discrete-event facets of reality with Nature's continuous-time aspects. The computing scientist and the mathematician have re-discovered each other. Indeed, in the late sixties, the programming language Simula, "father" of modern object-oriented languages, had already been speci?cally designed to model dynamical systems 76]. Today, theimportanceofcomputer-basedsystemsinbanks, telecom- nication systems, TVs, planes and cars results in larger and increasingly complex models. Two techniques had to be developed and are now fruitfully used to keep analytic and synthetic processes feasible: composition and - straction.Acompositionalapproachbuildssystemsbycomposingsubsystems that are smaller and more easily understood or built. Abstraction simpli?es unimportantmattersandputstheemphasisoncrucialparametersofsystems. Inordertodealwiththecomplexityofsomestate-transitionsystemsand tobetterunderstandcomplexorchaoticphenomenaemergingoutofthe behaviorofsomedynamicalsystems, theaimofthismonographistopresent ?rststepstowardtheintegratedstudyofcompositionandabstractionin dynamical systems de?ned by iterated relations. Themaininsightsandresultsofthisworkconcernastructuralorm f of complexityobtainedbycompositionofsimpleinteractingsystemspresenting opposedattractingbehaviors.Thiscomplexityexpressesitselfintheevo- tionofcomposedsystems, i.e., theirdynamics, andintherelationsbetween their initial and ?nal states, i.e., the computations they realize. The theor- ical results presented in the monograph are then validated by the analysis ofdynamicalandcomputationalpropertiesoflow-dimensionalprototypesof chaotic systems (e.g. Smale horseshoe map, Cantor relation, logistic map), high-dimensional spatiotemporally complex systems (e.g. cellular automata), and formal systems (e.g. paperfoldings, Turing machines). Acknowledgements. ThismonographisarevisionofmyPhDthesiswhichwas completed at the Universit e catholique de Louvain (Belgium) in March 96. VIII Preface The results presented here have been in?uenced by many people and I would like to take this opportunity to thank them all.
Show More
Product Format
Product Details
ISBN-13:
9783540655060
ISBN-10:
3540655069
Binding:
Paperback or Softback (Trade Paperback (Us))
Content Language:
English
More Product Details
Page Count:
280
Carton Quantity:
26
Product Dimensions:
6.14 x 0.61 x 9.21 inches
Weight:
0.91 pound(s)
Country of Origin:
DE
Subject Information
BISAC Categories
Computers | Data Science - Data Modeling & Design
Computers | General
Computers | Computer Science
Dewey Decimal:
005.73
Library of Congress Control Number:
99010039
Descriptions, Reviews, Etc.
publisher marketing
State-transition systems model machines, programs, and speci?cations 20, 23,284,329], butalsothegrowthanddeclineofantpopulations, ?nancial markets, diseases and crystals 22, 35, 178, 209, 279]. In the last decade, thegrowinguseofdigitalcontrollersinvariousenvironmentshasentailed theconvergenceofcontroltheoryandreal-timesystemstowardhybrids- tems 16] by combining both discrete-event facets of reality with Nature's continuous-time aspects. The computing scientist and the mathematician have re-discovered each other. Indeed, in the late sixties, the programming language Simula, "father" of modern object-oriented languages, had already been speci?cally designed to model dynamical systems 76]. Today, theimportanceofcomputer-basedsystemsinbanks, telecom- nication systems, TVs, planes and cars results in larger and increasingly complex models. Two techniques had to be developed and are now fruitfully used to keep analytic and synthetic processes feasible: composition and - straction.Acompositionalapproachbuildssystemsbycomposingsubsystems that are smaller and more easily understood or built. Abstraction simpli?es unimportantmattersandputstheemphasisoncrucialparametersofsystems. Inordertodealwiththecomplexityofsomestate-transitionsystemsand tobetterunderstandcomplexorchaoticphenomenaemergingoutofthe behaviorofsomedynamicalsystems, theaimofthismonographistopresent ?rststepstowardtheintegratedstudyofcompositionandabstractionin dynamical systems de?ned by iterated relations. Themaininsightsandresultsofthisworkconcernastructuralorm f of complexityobtainedbycompositionofsimpleinteractingsystemspresenting opposedattractingbehaviors.Thiscomplexityexpressesitselfintheevo- tionofcomposedsystems, i.e., theirdynamics, andintherelationsbetween their initial and ?nal states, i.e., the computations they realize. The theor- ical results presented in the monograph are then validated by the analysis ofdynamicalandcomputationalpropertiesoflow-dimensionalprototypesof chaotic systems (e.g. Smale horseshoe map, Cantor relation, logistic map), high-dimensional spatiotemporally complex systems (e.g. cellular automata), and formal systems (e.g. paperfoldings, Turing machines). Acknowledgements. ThismonographisarevisionofmyPhDthesiswhichwas completed at the Universit e catholique de Louvain (Belgium) in March 96. VIII Preface The results presented here have been in?uenced by many people and I would like to take this opportunity to thank them all.
Show More
List Price $54.99
Your Price
$54.44
