Back to Search

Statistische Informationstechnik: Signal - Und Mustererkennung, Parameter- Und Signalschätzung

AUTHOR Schuller, Bjrn W.; Schuller, Bjorn W.; Kristian, Kroschel et al.
PUBLISHER Springer (02/02/2011)
PRODUCT TYPE Hardcover (Hardcover)

Description

Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.

Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.

Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert.

Geeignet für Studierende und für Ingenieure in der Praxis.

Show More
Product Format
Product Details
ISBN-13: 9783642159534
ISBN-10: 3642159532
Binding: Hardback or Cased Book (Sewn)
Content Language: German
Edition Number: 0005
More Product Details
Page Count: 372
Carton Quantity: 22
Product Dimensions: 6.14 x 0.88 x 9.21 inches
Weight: 1.58 pound(s)
Feature Codes: Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Computers | Computer Science
Computers | Probability & Statistics - General
Computers | Electronics - General
Dewey Decimal: 005.55
Descriptions, Reviews, Etc.
jacket back

Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfhrt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten berblick ber die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.

Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschtzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden bercksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.

Die Parameterschtzung behandelt neben Bayes- und Maximum-Likelihood-Anstzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschtzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erlutert.

Geeignet fr Studierende und fr Ingenieure in der Praxis.

Show More
publisher marketing

Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.

Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.

Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert.

Geeignet für Studierende und für Ingenieure in der Praxis.

Show More
List Price $64.99
Your Price  $64.34
Hardcover