Statistische Informationstechnik: Signal - Und Mustererkennung, Parameter- Und Signalschätzung
| AUTHOR | Schuller, Bjrn W.; Schuller, Bjorn W.; Kristian, Kroschel et al. |
| PUBLISHER | Springer (02/02/2011) |
| PRODUCT TYPE | Hardcover (Hardcover) |
Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.
Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.
Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert.
Geeignet für Studierende und für Ingenieure in der Praxis.
Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfhrt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten berblick ber die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.
Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschtzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden bercksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.
Die Parameterschtzung behandelt neben Bayes- und Maximum-Likelihood-Anstzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschtzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erlutert.
Geeignet fr Studierende und fr Ingenieure in der Praxis.
Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.
Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.
Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert.
Geeignet für Studierende und für Ingenieure in der Praxis.
