Development and Characterization of a Dispersion-Encoded Method for Low-Coherence Interferometry
| AUTHOR | Taudt, Christopher |
| PUBLISHER | Springer Vieweg (11/17/2021) |
| PRODUCT TYPE | Paperback (Paperback) |
Description
This Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 m with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the developmentof a novel mathematical analysis approach.
Show More
Product Format
Product Details
ISBN-13:
9783658359256
ISBN-10:
3658359250
Binding:
Paperback or Softback (Trade Paperback (Us))
Content Language:
English
More Product Details
Page Count:
163
Carton Quantity:
42
Product Dimensions:
5.83 x 0.40 x 8.27 inches
Weight:
0.51 pound(s)
Feature Codes:
Illustrated
Country of Origin:
NL
Subject Information
BISAC Categories
Science | Physics - Optics & Light
Science | Measurement
Science | Lasers & Photonics
Descriptions, Reviews, Etc.
jacket back
This Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 µm with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the developmentof a novel mathematical analysis approach.
About the AuthorChristopher Taudt holds a diploma degree in Mechanical Engineering of the WH Zwickau. During a stay at the IT Sligo, Ireland, he earned a Bachelor Degree in Mechanical Engineering. After his studies, Christopher Taudt has worked on research projects in optical metrology and earned a PhD in optical metrology from the TU Dresden.
About the AuthorChristopher Taudt holds a diploma degree in Mechanical Engineering of the WH Zwickau. During a stay at the IT Sligo, Ireland, he earned a Bachelor Degree in Mechanical Engineering. After his studies, Christopher Taudt has worked on research projects in optical metrology and earned a PhD in optical metrology from the TU Dresden.
Show More
publisher marketing
This Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 m with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the developmentof a novel mathematical analysis approach.
Show More
List Price $49.99
Your Price
$49.49
