Kalman-Filter: Einführung in Die Zustandsschätzung Und Ihre Anwendung Für Eingebettete Systeme
| AUTHOR | Dingler, Sebastian; Marchthaler, Reiner |
| PUBLISHER | Springer Vieweg (04/30/2024) |
| PRODUCT TYPE | Paperback (Paperback) |
Description
Dieses Lehrbuch befasst sich leicht verständlich mit der Theorie der Kalman-Filterung. Die Autoren geben damit eine Einführung in Kalman-Filter und deren Anwendung für eingebettete Systeme. Zusätzlich wird anhand konkreter Praxisbeispiele der Kalman-Filterentwurf demonstriert - Teilschritte werden im Buch ausführlich erläutert.Kalman-Filter sind die erste Wahl, um Störsignale auf den Sensorsignalen zu eliminieren. Dies ist von besonderer Bedeutung, da viele technische Systeme ihre prozessrelevanten Informationen über Sensoren gewinnen. Jeder Messwert eines Sensors wei t jedoch aufgrund verschiedener Ursachen einen Messfehler auf. Würde ein System nur auf Basis dieser ungenauen Sensorinformationen arbeiten, so wären viele Anwendungen, wie zum Beispiel ein Navigationssystem oder autonome arbeitende Systeme, nicht möglich.Das Buch ist geeignet für interessierte Bachelor- und Master-Studierende der Fachrichtungen Informatik, Maschinenbau, Elektrotechnik undMechatronik. Ebenso ist das Buch eine Hilfe für Ingenieure und Wissenschaftler, die ein Kalman-Filter z. B. für die Datenfusion oder die Schätzung unbekannter Grö en in Echtzeitanwendungen einsetzen möchten.
Show More
Product Format
Product Details
ISBN-13:
9783658432157
ISBN-10:
3658432152
Binding:
Paperback or Softback (Trade Paperback (Us))
Content Language:
German
Edition Number:
0002
More Product Details
Page Count:
238
Carton Quantity:
16
Product Dimensions:
6.69 x 0.54 x 9.61 inches
Weight:
0.91 pound(s)
Feature Codes:
Illustrated
Country of Origin:
NL
Subject Information
BISAC Categories
Computers | Networking - General
Computers | Probability & Statistics - General
Computers | Electrical
Descriptions, Reviews, Etc.
jacket back
Dieses Lehrbuch befasst sich leicht verständlich mit der Theorie der Kalman-Filterung. Die Autoren geben damit eine Einführung in Kalman-Filter und deren Anwendung für eingebettete Systeme. Zusätzlich wird anhand konkreter Praxisbeispiele der Kalman-Filterentwurf demonstriert - Teilschritte werden im Buch ausführlich erläutert.Kalman-Filter sind die erste Wahl, um Störsignale auf den Sensorsignalen zu eliminieren. Dies ist von besonderer Bedeutung, da viele technische Systeme ihre prozessrelevanten Informationen über Sensoren gewinnen. Jeder Messwert eines Sensors weißt jedoch aufgrund verschiedener Ursachen einen Messfehler auf. Würde ein System nur auf Basis dieser ungenauen Sensorinformationen arbeiten, so wären viele Anwendungen, wie zum Beispiel ein Navigationssystem oder autonome arbeitende Systeme, nicht möglich. Die 2. Auflage erweitert den Inhalt mit einem neuen Kapitel über nichtlineare Kalman-Filter (EKF) und zusätzlichen Anwendungsbeispielen. Das Buch ist geeignet für interessierte Bachelor- und Master-Studierende der Fachrichtungen Informatik, Maschinenbau, Elektrotechnik und Mechatronik. Ebenso ist das Buch eine Hilfe für Ingenieur*innen und Wissenschaftler*innen, die ein Kalman-Filter z. B. für die Datenfusion oder die Schätzung unbekannter Größen in Echtzeitanwendungen einsetzen möchten.
Der Inhalt
Die AutorenProf. Dr. Reiner Marchthaler hat eine Professur für das Lehrgebiet "Embedded Systems" in der Fakultät Informationstechnik an der Hochschule Esslingen mit dem Spezialgebiet autonom fahrende Fahrzeuge. Sebastian Dingler studierte Technische Informatik und Informatik an der Hochschule Esslingen und am Karlsruher Institut für Technologie (KIT).
Der Inhalt
- Einführendes Beispiel
- Zustandsraumbeschreibung, Wahrscheinlichkeitstheorie und Signaltheorie
- Klassisches Kalman-Filter inkl. Systemrauschen
- Nichtlineare Kalman-Filter (EKF)
- Anwendungsbeispiele: Bias-Schätzung, Messrauschen mit Offset, Alternatives Bewegungsmodell der Mondfähre, Schätzung einer Kovarianzmatrix, kinematische Modelle, Schätzung einer Trajektorie (EKF), Gleichstrommotor
- Anhang: Vektor- und Matrizenrechnung, Sammlung wichtiger verwendeter Formeln, Lösung der Matrix-Expotentialgleichungen, Herleitung der Kalman-Verstärkung für kinematische Modelle
Die AutorenProf. Dr. Reiner Marchthaler hat eine Professur für das Lehrgebiet "Embedded Systems" in der Fakultät Informationstechnik an der Hochschule Esslingen mit dem Spezialgebiet autonom fahrende Fahrzeuge. Sebastian Dingler studierte Technische Informatik und Informatik an der Hochschule Esslingen und am Karlsruher Institut für Technologie (KIT).
Show More
publisher marketing
Dieses Lehrbuch befasst sich leicht verständlich mit der Theorie der Kalman-Filterung. Die Autoren geben damit eine Einführung in Kalman-Filter und deren Anwendung für eingebettete Systeme. Zusätzlich wird anhand konkreter Praxisbeispiele der Kalman-Filterentwurf demonstriert - Teilschritte werden im Buch ausführlich erläutert.Kalman-Filter sind die erste Wahl, um Störsignale auf den Sensorsignalen zu eliminieren. Dies ist von besonderer Bedeutung, da viele technische Systeme ihre prozessrelevanten Informationen über Sensoren gewinnen. Jeder Messwert eines Sensors wei t jedoch aufgrund verschiedener Ursachen einen Messfehler auf. Würde ein System nur auf Basis dieser ungenauen Sensorinformationen arbeiten, so wären viele Anwendungen, wie zum Beispiel ein Navigationssystem oder autonome arbeitende Systeme, nicht möglich.Das Buch ist geeignet für interessierte Bachelor- und Master-Studierende der Fachrichtungen Informatik, Maschinenbau, Elektrotechnik undMechatronik. Ebenso ist das Buch eine Hilfe für Ingenieure und Wissenschaftler, die ein Kalman-Filter z. B. für die Datenfusion oder die Schätzung unbekannter Grö en in Echtzeitanwendungen einsetzen möchten.
Show More
List Price $39.99
Your Price
$39.59
