Back to Search

Hybride DWT-, PCA- und ICA-Merkmale für die Gesichtserkennung mit ANN

AUTHOR Shakir, Mohammad; Saxena, Manish; Akhtar, Nadeem
PUBLISHER Verlag Unser Wissen (11/21/2023)
PRODUCT TYPE Paperback (Paperback)

Description
Die Gesichtserkennung spielt eine wichtige Rolle bei der biometrischen Identifizierung von Personen. Die biometrische Erkennungstechnik ist eine effiziente Methode und findet breite Anwendung im Bereich der Informationsbeschaffung, des automatischen Bankwesens, der Zugangskontrolle zu Sicherheitsbereichen usw. Die vorgeschlagene Methode basiert auf der Hauptkomponentenanalyse (PCA) von Bildern mit einer Kombination von DWT-Details. Dieser Ansatz reduziert den Speicherbedarf und die Berechnungszeit, während die Daten erhalten bleiben. Das vorgeschlagene Verfahren nutzt die Fähigkeiten der diskreten Wavelet-Transformationszerlegung zur Merkmalsextraktion und wendet bestimmte Normalisierungstechniken an, die seine Robustheit gegenüber Variationen der Gesichtsgeometrie und der Beleuchtung erhöhen. Traditionell wird zur Darstellung des menschlichen Gesichts die PCA für das gesamte Gesichtsbild durchgeführt. Zur Klassifizierung der Merkmale werden ein neuronales Netz und ein K-NN-Klassifikator verwendet, und die Ähnlichkeitsmessung erfolgt über den Euklidischen Abstand. Die experimentellen Ergebnisse zeigen, dass die vorgeschlagene Methode effektiv ist und mehrere wünschenswerte Eigenschaften besitzt, wenn sie mit vielen bestehenden Algorithmen verglichen wird. Der Ansatz PCA-DWT-ICA-Hybrid wird in MATLAB anhand der Yale-Gesichtsdatenbank evaluiert.
Show More
Product Format
Product Details
ISBN-13: 9786206860747
ISBN-10: 6206860744
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: German
More Product Details
Page Count: 64
Carton Quantity: 110
Product Dimensions: 6.00 x 0.15 x 9.00 inches
Weight: 0.23 pound(s)
Country of Origin: US
Descriptions, Reviews, Etc.
publisher marketing
Die Gesichtserkennung spielt eine wichtige Rolle bei der biometrischen Identifizierung von Personen. Die biometrische Erkennungstechnik ist eine effiziente Methode und findet breite Anwendung im Bereich der Informationsbeschaffung, des automatischen Bankwesens, der Zugangskontrolle zu Sicherheitsbereichen usw. Die vorgeschlagene Methode basiert auf der Hauptkomponentenanalyse (PCA) von Bildern mit einer Kombination von DWT-Details. Dieser Ansatz reduziert den Speicherbedarf und die Berechnungszeit, während die Daten erhalten bleiben. Das vorgeschlagene Verfahren nutzt die Fähigkeiten der diskreten Wavelet-Transformationszerlegung zur Merkmalsextraktion und wendet bestimmte Normalisierungstechniken an, die seine Robustheit gegenüber Variationen der Gesichtsgeometrie und der Beleuchtung erhöhen. Traditionell wird zur Darstellung des menschlichen Gesichts die PCA für das gesamte Gesichtsbild durchgeführt. Zur Klassifizierung der Merkmale werden ein neuronales Netz und ein K-NN-Klassifikator verwendet, und die Ähnlichkeitsmessung erfolgt über den Euklidischen Abstand. Die experimentellen Ergebnisse zeigen, dass die vorgeschlagene Methode effektiv ist und mehrere wünschenswerte Eigenschaften besitzt, wenn sie mit vielen bestehenden Algorithmen verglichen wird. Der Ansatz PCA-DWT-ICA-Hybrid wird in MATLAB anhand der Yale-Gesichtsdatenbank evaluiert.
Show More
List Price $39.00
Your Price  $38.61
Paperback