Sistema de deteção de cibertrollagem
| AUTHOR | Dhawas, Pranali; Bhagat, Dhananjay |
| PUBLISHER | Edicoes Nosso Conhecimento (02/26/2024) |
| PRODUCT TYPE | Paperback (Paperback) |
Description
O discurso de ódio e o assédio estão generalizados na comunicação em linha, devido à liberdade e ao anonimato dos utilizadores e à falta de regulamentação das redes sociais. Por este motivo, o trolling cibernético e o bullying são problemas importantes numa sociedade. Para ultrapassar este problema, podemos utilizar a capacidade de aprendizagem automática para a deteção de discursos de ódio, a fim de captar propriedades comuns de conjuntos de dados genéricos de tópicos e transferir este conhecimento para reconhecer manifestações específicas de discursos de ódio utilizando PNL, ML e análise. O nosso principal objetivo é aplicar este modelo sofisticado e eficiente em dados de texto para obter resultados óptimos e precisos. Usamos diferentes técnicas de aprendizado de máquina e aprendizado profundo, incluindo abordagens multimodais. Utilizamos um conjunto de dados que está dividido em tópicos específicos, como misoginia, sexismo, racismo, xenofobia e homofobia. Treinar um modelo numa combinação de vários conjuntos de dados específicos (conjuntos de treino de vários) é mais eficaz do que treinar um modelo num conjunto de dados genérico atópico. Os conjuntos de dados podem ser recolhidos a partir de várias fontes, como a API do YouTube, a API do Twitter, o web-scrapping ou várias fontes governamentais. O nosso objetivo é efetuar o pré-processamento e a análise exploratória dos dados recolhidos e retirar conclusões a partir deles,
Show More
Product Format
Product Details
ISBN-13:
9786207137756
ISBN-10:
6207137752
Binding:
Paperback or Softback (Trade Paperback (Us))
Content Language:
Portuguese
More Product Details
Page Count:
56
Carton Quantity:
126
Product Dimensions:
6.00 x 0.13 x 9.00 inches
Weight:
0.21 pound(s)
Country of Origin:
US
Subject Information
BISAC Categories
Technology & Engineering | General
Descriptions, Reviews, Etc.
publisher marketing
O discurso de ódio e o assédio estão generalizados na comunicação em linha, devido à liberdade e ao anonimato dos utilizadores e à falta de regulamentação das redes sociais. Por este motivo, o trolling cibernético e o bullying são problemas importantes numa sociedade. Para ultrapassar este problema, podemos utilizar a capacidade de aprendizagem automática para a deteção de discursos de ódio, a fim de captar propriedades comuns de conjuntos de dados genéricos de tópicos e transferir este conhecimento para reconhecer manifestações específicas de discursos de ódio utilizando PNL, ML e análise. O nosso principal objetivo é aplicar este modelo sofisticado e eficiente em dados de texto para obter resultados óptimos e precisos. Usamos diferentes técnicas de aprendizado de máquina e aprendizado profundo, incluindo abordagens multimodais. Utilizamos um conjunto de dados que está dividido em tópicos específicos, como misoginia, sexismo, racismo, xenofobia e homofobia. Treinar um modelo numa combinação de vários conjuntos de dados específicos (conjuntos de treino de vários) é mais eficaz do que treinar um modelo num conjunto de dados genérico atópico. Os conjuntos de dados podem ser recolhidos a partir de várias fontes, como a API do YouTube, a API do Twitter, o web-scrapping ou várias fontes governamentais. O nosso objetivo é efetuar o pré-processamento e a análise exploratória dos dados recolhidos e retirar conclusões a partir deles,
Show More
List Price $48.00
Your Price
$47.52
