Back to Search

Modellistica Numerica Per Problemi Differenziali

AUTHOR Quarteroni, Alfio
PUBLISHER Springer (05/10/2016)
PRODUCT TYPE Paperback (Paperback)

Description
In questo testo si introducono i concetti di base per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes e le leggi di conservazione; si forniscono inoltre numerosi esempi fisici che stanno alla base di tali equazioni. Quindi si analizzano metodi di risoluzione numerica basati su elementi finiti (continui e discontinui), differenze finite, volumi finiti, metodi spettrali (continui e discontinui), nonché strategie di approssimazione più avanzate basate sui metodi di decomposizione di domini o quelli di risoluzione di problemi di controllo ottimale. In particolare vengono discussi gli aspetti algoritmici e di implementazione al calcolatore e si forniscono diversi programmi di semplice utilizzo. Il testo non presuppone una approfondita conoscenza matematica delle equazioni alle derivate parziali: iconcetti rigorosamente indispensabili al riguardo sono riportati nell'Appendice. Esso è pertanto adatto agli studenti dei corsi di laurea di indirizzo scientifico (Ingegneria, Matematica, Fisica, Scienze dell'Informazione) e consigliabile a ricercatori del mondo accademico ed extra-accademico che vogliano avvicinarsi a questo interessante ramo della matematica applicata e delle scienze computazionali.
Show More
Product Format
Product Details
ISBN-13: 9788847057807
ISBN-10: 8847057809
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: Italian
Edition Number: 0006
More Product Details
Page Count: 651
Carton Quantity: 12
Product Dimensions: 6.10 x 1.20 x 9.20 inches
Weight: 2.70 pound(s)
Country of Origin: NL
Subject Information
BISAC Categories
Mathematics | Mathematical Analysis
Mathematics | Number Systems
Mathematics | Applied
Dewey Decimal: 003.3
Descriptions, Reviews, Etc.
jacket back

In questo testo si introducono i concetti di base per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes e le leggi di conservazione. Si forniscono inoltre numerosi esempi fisici che stanno alla base di tali equazioni. Quindi si analizzano metodi di risoluzione numerica basati su elementi finiti (continui e discontinui), differenze finite, volumi finiti, metodi spettrali (continui e discontinui), nonch strategie di approssimazione pi avanzate basate sui metodi di decomposizione di domini, i metodi a basi ridotte o quelli di risoluzione di problemi di controllo ottimale. In particolare vengono discussi gli aspetti algoritmici e di implementazione al calcolatore e si forniscono diversi programmi di semplice utilizzo. Il testo non presuppone una approfondita conoscenza matematica delle equazioni alle derivate parziali: i concetti rigorosamente indispensabili al riguardo sono riportati nell'Appendice. Esso  pertanto adatto agli studenti dei corsi di laurea di indirizzo scientifico (Ingegneria, Matematica, Fisica, Scienze dell'Informazione) e consigliabile a ricercatori del mondo accademico ed extra-accademico che vogliano avvicinarsi a questo interessante ramo della matematica applicata e delle scienze computazionali.

Nel corso delle diverse edizioni i contenuti sono aumentati significativamente, aprendo a temi di crescente attualit nel contesto del calcolo scientifico per problemi differenziali. In particolare la sesta edizione contiene rispetto alla precedente un capitolo nuovo sulle basi ridotte, una moderna strategia di riduzione di modello per la risoluzione efficiente di problemi differenziali parametrizzati.

Show More
publisher marketing
In questo testo si introducono i concetti di base per la modellistica numerica di problemi differenziali alle derivate parziali. Si considerano le classiche equazioni lineari ellittiche, paraboliche ed iperboliche, ma anche altre equazioni, quali quelle di diffusione e trasporto, di Navier-Stokes e le leggi di conservazione; si forniscono inoltre numerosi esempi fisici che stanno alla base di tali equazioni. Quindi si analizzano metodi di risoluzione numerica basati su elementi finiti (continui e discontinui), differenze finite, volumi finiti, metodi spettrali (continui e discontinui), nonché strategie di approssimazione più avanzate basate sui metodi di decomposizione di domini o quelli di risoluzione di problemi di controllo ottimale. In particolare vengono discussi gli aspetti algoritmici e di implementazione al calcolatore e si forniscono diversi programmi di semplice utilizzo. Il testo non presuppone una approfondita conoscenza matematica delle equazioni alle derivate parziali: iconcetti rigorosamente indispensabili al riguardo sono riportati nell'Appendice. Esso è pertanto adatto agli studenti dei corsi di laurea di indirizzo scientifico (Ingegneria, Matematica, Fisica, Scienze dell'Informazione) e consigliabile a ricercatori del mondo accademico ed extra-accademico che vogliano avvicinarsi a questo interessante ramo della matematica applicata e delle scienze computazionali.
Show More

Author: Quarteroni, Alfio
Gli Autori sono docenti di matematica presso l'EPFL di Losanna. Il curatore dell'edizione italiana ?? un noto ricercatore e docente presso il Politecnico di Milano e l'EPFL
Show More
List Price $49.99
Your Price  $49.49
Paperback