Back to Search

5 T High Temperature Superconductor 3 Pole Wavelength Shifter Magnet for Accelerator-Based Light Sources

AUTHOR Park, Jeonghwan
PUBLISHER Springer (08/24/2025)
PRODUCT TYPE Hardcover (Hardcover)

Description
This thesis reports the development of the world's first 5 T conduction-cooled metal-insulated (MI) wavelength shifter (WLS) magnet using high-temperature superconducting (HTS) technology. Overcoming key challenges such as Lorentz force-induced stress, screening current effects, and the limitations of liquid helium cooling, this study introduces a conduction-cooled MI HTS magnet with innovative electromagnetic, mechanical, and thermal design methods.

The research establishes core manufacturing technologies, including precision winding, jointing, and cryogenic integration, ensuring stable operation below 20 K. A 3D screening current-induced field analysis model is developed and experimentally validated, offering insights into field distortions and mitigation strategies.

Achieving a record 5 T field, this is the first domestically produced HTS WLS magnet. Its application in the Pohang Light Source II storage ring is expected to enhance photon brightness by 1,000 times at 100 keV, advancing next-generation accelerator technologies.

Show More
Product Format
Product Details
ISBN-13: 9789819686780
ISBN-10: 9819686784
Binding: Hardback or Cased Book (Sewn)
Content Language: English
More Product Details
Page Count: 126
Carton Quantity: 0
Product Dimensions: 6.48 x 0.49 x 9.33 inches
Weight: 0.88 pound(s)
Country of Origin: NL
Subject Information
BISAC Categories
Science | Physics - Nuclear
Science | Chemistry - General
Science | Materials Science - Electronic Materials
Descriptions, Reviews, Etc.
jacket back

This thesis reports the development of the world's first 5 T conduction-cooled metal-insulated (MI) wavelength shifter (WLS) magnet using high-temperature superconducting (HTS) technology. Overcoming key challenges such as Lorentz force-induced stress, screening current effects, and the limitations of liquid helium cooling, this study introduces a conduction-cooled MI HTS magnet with innovative electromagnetic, mechanical, and thermal design methods.

The research establishes core manufacturing technologies, including precision winding, jointing, and cryogenic integration, ensuring stable operation below 20 K. A 3D screening current-induced field analysis model is developed and experimentally validated, offering insights into field distortions and mitigation strategies.

Achieving a record 5 T field, this is the first domestically produced HTS WLS magnet. Its application in the Pohang Light Source II storage ring is expected to enhance photon brightness by 1,000 times at 100 keV, advancing next-generation accelerator technologies.

Show More
publisher marketing
This thesis reports the development of the world's first 5 T conduction-cooled metal-insulated (MI) wavelength shifter (WLS) magnet using high-temperature superconducting (HTS) technology. Overcoming key challenges such as Lorentz force-induced stress, screening current effects, and the limitations of liquid helium cooling, this study introduces a conduction-cooled MI HTS magnet with innovative electromagnetic, mechanical, and thermal design methods.

The research establishes core manufacturing technologies, including precision winding, jointing, and cryogenic integration, ensuring stable operation below 20 K. A 3D screening current-induced field analysis model is developed and experimentally validated, offering insights into field distortions and mitigation strategies.

Achieving a record 5 T field, this is the first domestically produced HTS WLS magnet. Its application in the Pohang Light Source II storage ring is expected to enhance photon brightness by 1,000 times at 100 keV, advancing next-generation accelerator technologies.

Show More
List Price $199.99
Your Price  $197.99
Hardcover