Back to Search

Maschinelles Lernen: Die Grundlagen

AUTHOR Jung, Alexander
PUBLISHER Springer (02/14/2024)
PRODUCT TYPE Hardcover (Hardcover)

Description

Maschinelles Lernen (ML) ist zu einem alltäglichen Element in unserem Leben und zu einem Standardwerkzeug für viele Bereiche der Wissenschaft und Technik geworden. Um ML optimal nutzen zu können, ist es wichtig, die zugrunde liegenden Prinzipien zu verstehen.

In diesem Buch wird ML als die rechnerische Umsetzung des wissenschaftlichen Prinzips betrachtet. Dieses Prinzip besteht darin, ein Modell eines gegebenen datenerzeugenden Phänomens kontinuierlich anzupassen, indem eine Form des Verlustes, der durch seine Vorhersagen entsteht, minimiert wird.

Das Buch schult den Leser darin, verschiedene ML-Anwendungen und -Methoden in drei Komponenten (Daten, Modell und Verlust) aufzuschlüsseln, und hilft ihm so, aus dem riesigen Angebot an vorgefertigten ML-Methoden auszuwählen.

Der Drei-Komponenten-Ansatz des Buches erlaubt eine einheitliche und transparente Darstellung verschiedener ML-Techniken. Wichtige Methoden zu Regularisierung, zum Schutz der Privatsphäre und zur Erklärbarkeit von ML-Methoden sind Spezialfälle dieses Drei-Komponenten-Ansatz.


Show More
Product Format
Product Details
ISBN-13: 9789819979714
ISBN-10: 9819979714
Binding: Hardback or Cased Book (Sewn)
Content Language: German
More Product Details
Page Count: 235
Carton Quantity: 0
Country of Origin: NL
Subject Information
BISAC Categories
Computers | Artificial Intelligence - General
Computers | Information Theory
Computers | Computer Science
Descriptions, Reviews, Etc.
jacket back

Maschinelles Lernen (ML) ist zu einem alltäglichen Element in unserem Leben und zu einem Standardwerkzeug für viele Bereiche der Wissenschaft und Technik geworden. Um ML optimal nutzen zu können, ist es wichtig, die zugrunde liegenden Prinzipien zu verstehen.

In diesem Buch wird ML als die rechnerische Umsetzung des wissenschaftlichen Prinzips betrachtet. Dieses Prinzip besteht darin, ein Modell eines gegebenen datenerzeugenden Phänomens kontinuierlich anzupassen, indem eine Form des Verlustes, der durch seine Vorhersagen entsteht, minimiert wird.

Das Buch schult den Leser darin, verschiedene ML-Anwendungen und -Methoden in drei Komponenten (Daten, Modell und Verlust) aufzuschlüsseln, und hilft ihm so, aus dem riesigen Angebot an vorgefertigten ML-Methoden auszuwählen.

Der Drei-Komponenten-Ansatz des Buches erlaubt eine einheitliche und transparente Darstellung verschiedener ML-Techniken. Wichtige Methoden zu Regularisierung, zum Schutz der Privatsphäre und zur Erklärbarkeit von ML-Methoden sind Spezialfälle dieses Drei-Komponenten-Ansatz.

Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz durchgeführt. Eine anschließende menschliche Überarbeitung erfolgte vor allem in Bezug auf den Inhalt.


Show More
publisher marketing

Maschinelles Lernen (ML) ist zu einem alltäglichen Element in unserem Leben und zu einem Standardwerkzeug für viele Bereiche der Wissenschaft und Technik geworden. Um ML optimal nutzen zu können, ist es wichtig, die zugrunde liegenden Prinzipien zu verstehen.

In diesem Buch wird ML als die rechnerische Umsetzung des wissenschaftlichen Prinzips betrachtet. Dieses Prinzip besteht darin, ein Modell eines gegebenen datenerzeugenden Phänomens kontinuierlich anzupassen, indem eine Form des Verlustes, der durch seine Vorhersagen entsteht, minimiert wird.

Das Buch schult den Leser darin, verschiedene ML-Anwendungen und -Methoden in drei Komponenten (Daten, Modell und Verlust) aufzuschlüsseln, und hilft ihm so, aus dem riesigen Angebot an vorgefertigten ML-Methoden auszuwählen.

Der Drei-Komponenten-Ansatz des Buches erlaubt eine einheitliche und transparente Darstellung verschiedener ML-Techniken. Wichtige Methoden zu Regularisierung, zum Schutz der Privatsphäre und zur Erklärbarkeit von ML-Methoden sind Spezialfälle dieses Drei-Komponenten-Ansatz.


Show More
List Price $64.99
Your Price  $64.34
Hardcover