Back to Search

Técnicas Estadísticas para la Ciencia de Datos a través de R. Aprendizaje no Supervisado: Análisis Clúster, Redes Neuronales y Escalamiento Multidimen

AUTHOR López, César Pérez
PUBLISHER Scientific Publishers (01/17/2025)
PRODUCT TYPE Paperback (Paperback)

Description

La Ciencia de Datos supone la base de la Inteligencia Artificial y el futuro de todos los procesos complejos de toma de decisiones combinando algoritmos matemáticos y técnicas de Aprendizaje Automático. La Ciencia de Datos proporciona la estructura necesaria para entrenar modelos de Inteligencia Artificial. Las técnicas estadísticas son un gran apoyo para la algoritmia de la ciencia de datos. A lo largo de este libro se desarrollan gran parte de las técnicas de aprendizaje no supervisado desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R. Se profundiza en las Técnicas de Clasificación y Segmentación como el Análisis Clúster, el Escalamiento Multidimensional y el Análisis de Correspondencias. Se desarrolla especialmente el uso de las Redes Neuronales para la clasificación tratando las Redes de Kohonen, las Redes SOM (Self Organizing Maps), las Redes Neuronales Convolucionales (CNNs), las Redes de Hopfield, detección de anomalías, Autoencoders y reconocimiento de patrones. Todas las técnicas se abordan desde una doble óptica teórica y práctica.

Show More
Product Format
Product Details
ISBN-13: 9798230281443
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: Spanish
More Product Details
Page Count: 196
Carton Quantity: 36
Product Dimensions: 6.00 x 0.45 x 9.00 inches
Weight: 0.59 pound(s)
Country of Origin: US
Subject Information
BISAC Categories
Computers | Artificial Intelligence - General
Computers | Data Science - Machine Learning
Computers | Data Science - Neural Networks
Descriptions, Reviews, Etc.
publisher marketing

La Ciencia de Datos supone la base de la Inteligencia Artificial y el futuro de todos los procesos complejos de toma de decisiones combinando algoritmos matemáticos y técnicas de Aprendizaje Automático. La Ciencia de Datos proporciona la estructura necesaria para entrenar modelos de Inteligencia Artificial. Las técnicas estadísticas son un gran apoyo para la algoritmia de la ciencia de datos. A lo largo de este libro se desarrollan gran parte de las técnicas de aprendizaje no supervisado desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R. Se profundiza en las Técnicas de Clasificación y Segmentación como el Análisis Clúster, el Escalamiento Multidimensional y el Análisis de Correspondencias. Se desarrolla especialmente el uso de las Redes Neuronales para la clasificación tratando las Redes de Kohonen, las Redes SOM (Self Organizing Maps), las Redes Neuronales Convolucionales (CNNs), las Redes de Hopfield, detección de anomalías, Autoencoders y reconocimiento de patrones. Todas las técnicas se abordan desde una doble óptica teórica y práctica.

Show More
List Price $25.99
Your Price  $25.73
Paperback