Back to Search

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer

AUTHOR Li, Ben Q.
PUBLISHER Springer (12/20/2005)
PRODUCT TYPE Hardcover (Hardcover)

Description

The discontinuous finite element method (also known as the discontinuous Galerkin method) embodies the advantages of both finite element and finite difference methods. It can be used in convection-dominant applications while maintaining geometric flexibility and higher local approximations throught the use of higer-order elements. Element-by element connection propagates the effect of boundary conditions and the local formulation obviates the need for global matrix assembly. All of this adds up to a method which is not unduly memory-intensive and uniquely useful for working with computational dynamics, heat transfer and fluid flow calculations.

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer offers its readers a systematic and practical introduction to the discontinuous finite element method. It moves from a brief review of the fundamental laws and equations governing thermal and fluid systems, through a discussion of different approaches to the formulation of discontinuous finite element solutions for boundary and initial value problems, to their applicaton in a variety of thermal-system and fluid-related problems, including:

- heat conduction problems;

- convection-dominant problems;

- computational compressible flows;

- external radiation problems;

- internal radiation and radiative transfer;

- free- and moving-boundary problems;

- micro- and nanoscale heat transfer and fluid flow;

- thermal fluid flow under the influence of applied magnetic fields.

Mesh generation and adaptivity, parellelization algorithms and a priori and a posteriori error analysis are also introduced and explained, rounding out a comprehensive review of the subject.

Each chapter features worked examples and exercises illustrating situations ranging from simple benchmarks to practical engineeringquestions.

This textbook is written to form the foundations of senior undergraduate and graduate learning and also provides scientists, applied mathematicians and research engineers with a thorough treatment of basic concepts, specific techniques and methods for the use of discontinuous Galerkin methods in computational fluid dynamics and heat transfer applications.

Show More
Product Format
Product Details
ISBN-13: 9781852339883
ISBN-10: 1852339888
Binding: Hardback or Cased Book (Unsewn / Adhesive Bound)
Content Language: English
More Product Details
Page Count: 578
Carton Quantity: 14
Product Dimensions: 6.56 x 1.48 x 9.42 inches
Weight: 2.20 pound(s)
Feature Codes: Index, Table of Contents, Illustrated
Country of Origin: DE
Subject Information
BISAC Categories
Technology & Engineering | Electronics - General
Technology & Engineering | Mechanical
Technology & Engineering | Chemical & Biochemical
Dewey Decimal: 532.001
Library of Congress Control Number: 2005935664
Descriptions, Reviews, Etc.
jacket back

The discontinuous finite element method (also known as the discontinuous Galerkin method) embodies the advantages of both finite element and finite difference methods. It can be used in convection-dominant applications while maintaining geometric flexibility and higher local approximations throught the use of higer-order elements. Element-by element connection propagates the effect of boundary conditions and the local formulation obviates the need for global matrix assembly. All of this adds up to a method which is not unduly memory-intensive and uniquely useful for working with computational dynamics, heat transfer and fluid flow calculations.

Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer offers its readers a systematic and practical introduction to the discontinuous finite element method. It moves from a brief review of the fundamental laws and equations governing thermal and fluid systems, through a discussion of different approaches to the formulation of discontinuous finite element solutions for boundary and initial value problems, to their applicaton in a variety of thermal-system and fluid-related problems, including:

- heat conduction problems;

- convection-dominant problems;

- computational compressible flows;

- external radiation problems;

- internal radiation and radiative transfer;

- free- and moving-boundary problems;

- micro- and nanoscale heat transfer and fluid flow;

- thermal fluid flow under the influence of applied magnetic fields.

Mesh generation and adaptivity, parellelization algorithms and a priori and a posteriori error analysis are also introduced and explained, rounding out a comprehensive review of the subject.

Each chapter features worked examples and exercises illustrating situations ranging from simple benchmarks to practical engineeringquestions.

This textbook is written to form the foundations of senior undergraduate and graduate learning and also provides scientists, applied mathematicians and research engineers with a thorough treatment of basic concepts, specific techniques and methods for the use of discontinuous Galerkin methods in computational fluid dynamics and heat transfer applications.

Show More

Author: Li, Ben Q.
Dr. Ben Q. Li is Professor of Mechanical Engineering, Washington State University, Pullman, WA, USA. He has a Ph.D. in engineering from the University of California at Berkeley. His teaching and research is in computational fluid dynamics and heat transfer for thermofluids engineering and biological systems. He has published over 150 technical papers in his research area.
Show More
List Price $109.99
Your Price  $108.89
Hardcover