Back to Search

Knowledge Distillation in Computer Vision (Not yet published)

AUTHOR Zhang, Linfeng
PUBLISHER Springer (01/28/2026)
PRODUCT TYPE Paperback (Paperback)

Description

Discover the cutting-edge advancements in knowledge distillation for computer vision within this comprehensive monograph. As neural networks become increasingly complex, the demand for efficient and lightweight models grows critical, especially for real-world applications. This book uniquely bridges the gap between academic research and industrial implementation, exploring innovative methods to compress and accelerate deep neural networks without sacrificing accuracy. It addresses two fundamental problems in knowledge distillation: constructing effective student and teacher models and selecting the appropriate knowledge to distill. Presenting groundbreaking research on self-distillation and task-irrelevant knowledge distillation, the book offers new perspectives on model optimization. Readers will gain insights into applying these techniques across a wide range of visual tasks, from 2D and 3D object detection to image generation, effectively bridging the gap between AI research and practical deployment. By engaging with this text, readers will learn to enhance model performance, reduce computational costs, and improve model robustness. This book is ideal for researchers, practitioners, and advanced students with a background in computer vision and deep learning. Equip yourself with the knowledge to design and implement knowledge distillation, thereby improving the efficiency of computer vision models.

Show More
Product Format
Product Details
ISBN-13: 9789819503667
ISBN-10: 9819503663
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 120
Carton Quantity: 0
Country of Origin: NL
Subject Information
BISAC Categories
Computers | Artificial Intelligence - Computer Vision & Pattern Recognit
Computers | Image Processing
Descriptions, Reviews, Etc.
publisher marketing

Discover the cutting-edge advancements in knowledge distillation for computer vision within this comprehensive monograph. As neural networks become increasingly complex, the demand for efficient and lightweight models grows critical, especially for real-world applications. This book uniquely bridges the gap between academic research and industrial implementation, exploring innovative methods to compress and accelerate deep neural networks without sacrificing accuracy. It addresses two fundamental problems in knowledge distillation: constructing effective student and teacher models and selecting the appropriate knowledge to distill. Presenting groundbreaking research on self-distillation and task-irrelevant knowledge distillation, the book offers new perspectives on model optimization. Readers will gain insights into applying these techniques across a wide range of visual tasks, from 2D and 3D object detection to image generation, effectively bridging the gap between AI research and practical deployment. By engaging with this text, readers will learn to enhance model performance, reduce computational costs, and improve model robustness. This book is ideal for researchers, practitioners, and advanced students with a background in computer vision and deep learning. Equip yourself with the knowledge to design and implement knowledge distillation, thereby improving the efficiency of computer vision models.

Show More
List Price $54.99
Your Price  $54.44
Paperback