Query Processing on Probabilistic Data: A Survey
| AUTHOR | Van Den Broeck, Guy; Suciu, Dan |
| PUBLISHER | Now Publishers (08/08/2017) |
| PRODUCT TYPE | Paperback (Paperback) |
Description
Probabilistic data is motivated by the need to model uncertainty in large databases. Over the last twenty years or so, both the Database community and the AI community have studied various aspects of probabilistic relational data. Query Processing on Probabilistic Data: A Survey presents the main approaches developed in the literature, reconciling concepts developed in parallel by the two research communities. It starts with an extensive discussion of the main probabilistic data models and their relationships, followed by a brief overview of model counting and its relationship to probabilistic data. The monograph proceeds to discuss lifted probabilistic inference, a suite of techniques developed in parallel by the Database and AI communities for probabilistic query evaluation. It then provides a summary of query compilation, presenting some theoretical results highlighting limitations of various query evaluation techniques on probabilistic data. It ends with a brief discussion of some popular probabilistic data sets, systems, and applications that build on this technology.
Show More
Product Format
Product Details
ISBN-13:
9781680833140
ISBN-10:
1680833146
Binding:
Paperback or Softback (Trade Paperback (Us))
Content Language:
English
More Product Details
Page Count:
162
Carton Quantity:
48
Product Dimensions:
6.14 x 0.35 x 9.21 inches
Weight:
0.52 pound(s)
Country of Origin:
US
Subject Information
BISAC Categories
Computers | Database Administration & Management
Computers | Computer Science
Descriptions, Reviews, Etc.
publisher marketing
Probabilistic data is motivated by the need to model uncertainty in large databases. Over the last twenty years or so, both the Database community and the AI community have studied various aspects of probabilistic relational data. Query Processing on Probabilistic Data: A Survey presents the main approaches developed in the literature, reconciling concepts developed in parallel by the two research communities. It starts with an extensive discussion of the main probabilistic data models and their relationships, followed by a brief overview of model counting and its relationship to probabilistic data. The monograph proceeds to discuss lifted probabilistic inference, a suite of techniques developed in parallel by the Database and AI communities for probabilistic query evaluation. It then provides a summary of query compilation, presenting some theoretical results highlighting limitations of various query evaluation techniques on probabilistic data. It ends with a brief discussion of some popular probabilistic data sets, systems, and applications that build on this technology.
Show More
List Price $99.00
Your Price
$98.01
