Back to Search

Turbo Message Passing Algorithms for Structured Signal Recovery

AUTHOR Xue, Zhipeng; Yuan, Xiaojun
PUBLISHER Springer (10/14/2020)
PRODUCT TYPE Paperback (Paperback)

Description

This book takes a comprehensive study on turbo message passing algorithms for structured signal recovery, where the considered structured signals include 1) a sparse vector/matrix (which corresponds to the compressed sensing (CS) problem), 2) a low-rank matrix (which corresponds to the affine rank minimization (ARM) problem), 3) a mixture of a sparse matrix and a low-rank matrix (which corresponds to the robust principal component analysis (RPCA) problem). The book is divided into three parts. First, the authors introduce a turbo message passing algorithm termed denoising-based Turbo-CS (D-Turbo-CS). Second, the authors introduce a turbo message passing (TMP) algorithm for solving the ARM problem. Third, the authors introduce a TMP algorithm for solving the RPCA problem which aims to recover a low-rank matrix and a sparse matrix from their compressed mixture. With this book, we wish to spur new researches on applying message passing to various inference problems.

  • Provides an in depth look into turbo message passing algorithms for structured signal recovery
  • Includes efficient iterative algorithmic solutions for inference, optimization, and satisfaction problems through message passing
  • Shows applications in areas such as wireless communications and computer vision

Show More
Product Format
Product Details
ISBN-13: 9783030547615
ISBN-10: 3030547612
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: English
More Product Details
Page Count: 105
Carton Quantity: 66
Product Dimensions: 6.14 x 0.25 x 9.21 inches
Weight: 0.39 pound(s)
Feature Codes: Illustrated
Country of Origin: NL
Subject Information
BISAC Categories
Technology & Engineering | Telecommunications
Technology & Engineering | Electronics - General
Technology & Engineering | Networking - Hardware
Descriptions, Reviews, Etc.
jacket back

This book takes a comprehensive study on turbo message passing algorithms for structured signal recovery, where the considered structured signals include 1) a sparse vector/matrix (which corresponds to the compressed sensing (CS) problem), 2) a low-rank matrix (which corresponds to the affine rank minimization (ARM) problem), 3) a mixture of a sparse matrix and a low-rank matrix (which corresponds to the robust principal component analysis (RPCA) problem). The book is divided into three parts. First, the authors introduce a turbo message passing algorithm termed denoising-based Turbo-CS (D-Turbo-CS). Second, the authors introduce a turbo message passing (TMP) algorithm for solving the ARM problem. Third, the authors introduce a TMP algorithm for solving the RPCA problem which aims to recover a low-rank matrix and a sparse matrix from their compressed mixture. With this book, we wish to spur new researches on applying message passing to various inference problems.

  • Provides an in depth look into turbo message passing algorithms for structured signal recovery
  • Includes efficient iterative algorithmic solutions for inference, optimization, and satisfaction problems through message passing
  • Shows applications in areas such as wireless communications and computer vision

Show More
publisher marketing

This book takes a comprehensive study on turbo message passing algorithms for structured signal recovery, where the considered structured signals include 1) a sparse vector/matrix (which corresponds to the compressed sensing (CS) problem), 2) a low-rank matrix (which corresponds to the affine rank minimization (ARM) problem), 3) a mixture of a sparse matrix and a low-rank matrix (which corresponds to the robust principal component analysis (RPCA) problem). The book is divided into three parts. First, the authors introduce a turbo message passing algorithm termed denoising-based Turbo-CS (D-Turbo-CS). Second, the authors introduce a turbo message passing (TMP) algorithm for solving the ARM problem. Third, the authors introduce a TMP algorithm for solving the RPCA problem which aims to recover a low-rank matrix and a sparse matrix from their compressed mixture. With this book, we wish to spur new researches on applying message passing to various inference problems.

  • Provides an in depth look into turbo message passing algorithms for structured signal recovery
  • Includes efficient iterative algorithmic solutions for inference, optimization, and satisfaction problems through message passing
  • Shows applications in areas such as wireless communications and computer vision

Show More
List Price $64.99
Your Price  $64.34
Paperback